WMR control via dynamic feedback linearization: design, implementation, and experimental validation
نویسندگان
چکیده
The subject of this paper is the motion control problem of wheeled mobile robots (WMRs) in environments without obstacles. With reference to the popular unicycle kinematics, it is shown that dynamic feedback linearization is an efficient design tool leading to a solution simultaneously valid for both trajectory tracking and setpoint regulation problems. The implementation of this approach on the laboratory prototype SuperMARIO, a two-wheel differentially driven mobile robot, is described in detail. To assess the quality of the proposed controller, we compare its performance with that of several existing control techniques in a number of experiments. The obtained results provide useful guidelines for WMR control designers.
منابع مشابه
Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملConstruction of a WMR for Trajectory Tracking Control: Experimental Results
This paper reports a solution for trajectory tracking control of a differential drive wheeled mobile robot (WMR) based on a hierarchical approach. The general design and construction of the WMR are described. The hierarchical controller proposed has two components: a high-level control and a low-level control. The high-level control law is based on an input-output linearization scheme for the r...
متن کاملRobust Control of Encoderless Synchronous Reluctance Motor Drives Based on Adaptive Backstepping and Input-Output Feedback Linearization Techniques
In this paper, the design and implementation of adaptive speed controller for a sensorless synchronous reluctance motor (SynRM) drive system is proposed. A combination of well-known adaptive input-output feedback linearization (AIOFL) and adaptive backstepping (ABS) techniques are used for speed tracking control of SynRM. The AIOFL controller is capable of estimating motor two-axis inductances ...
متن کاملStabilization of the Unicycle via Dynamic Feedback Linearization
We consider the feedback control problem for a wheeled mobile robot with the kinematics of a unicycle, a typical example of nonholonomic robotic system. It is shown that dynamic feedback linearization can be used to design a simple control law which is valid for trajectory tracking as well as point stabilization tasks. In particular, for both cases exponential convergence with linear transients...
متن کاملFeedback Linearizing Control
In this chapter, the basic theory of feedback linearization is presented and issues of particular relevance to process control applications are discussed. Two fundamental nonlinear controller design techniques — input-output linearization and state-space linearization — are discussed in detail. The theory also is presented for linear systems to facilitate understanding of the nonlinear results....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Contr. Sys. Techn.
دوره 10 شماره
صفحات -
تاریخ انتشار 2002